10,685 research outputs found

    Correlation between electrons and vortices in quantum dots

    Full text link
    Exact many-body wave functions for quantum dots containing up to four interacting electrons are computed and we investigated the distribution of the wave function nodes, also called vortices. For this purpose, we evaluate the reduced wave function by fixing the positions of all but one electron and determine the locations of its zeros. We find that the zeros are strongly correlated with respect to each other and with respect to the position of the electrons and formulate rules describing their distribution. No multiple zeros are found, i.e. vortices with vorticity larger than one. Our exact calculations are compared to results extracted from the recently proposed rotating electron molecule (REM) wave functions

    Large exchange bias after zero-field cooling from an unmagnetized state

    Full text link
    Exchange bias (EB) is usually observed in systems with interface between different magnetic phases after field cooling. Here we report an unusual phenomenon in which a large EB can be observed in Ni-Mn-In bulk alloys after zero-field cooling from an unmagnetized state. We propose this is related to the newly formed interface between different magnetic phases during the initial magnetization process. The magnetic unidirectional anisotropy, which is the origin of EB effect, can be created isothermally below the blocking temperature.Comment: including supplementary information, Accepted by Physical Review Letter

    Modal simulation of gearbox vibration with experimental correlation

    Get PDF
    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment

    Measurements of Heavy Flavor and Di-electron Production at STAR

    Full text link
    Heavy quarks are produced early in the relativistic heavy ion collisions, and provide an excellent probe into the hot and dense nuclear matter created at RHIC. In these proceedings, we will discuss recent STAR measurements of heavy flavor production, to investigate the heavy quark interaction with the medium. Electromagnetic probes, such as electrons, provide information on the various stages of the medium evolution without modification by final stage interactions. Di-electron production measurements by STAR will also be discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Analytical and experimental study of vibrations in a gear transmission

    Get PDF
    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement
    corecore